
Introduction to the Anylogic
Interface & Supporting Concepts

Announcements

• Lecture recording links posted

• Tutorial time: Extended class hours on
Tuesday or Thursday

– Choice will depend on other classes following ours

– Thursday is likely

The AnyLogic User Interface
Common Configuration

Problem area
(indicates
problem
Building/
running
Model)

Palette for adding items to canvas

The Project View (overview of projects & components)

Properties area
(shows info on
selected element in
project or palette
window)

Note: Double-Clicking on a Tab opens view as Full-Screen

The “Project View” – Hierarchically
Shows the Project Components

The “*” means that the model has changed
since the last time it was saved.
You should consider saving the model when you see
this!

Hands on Model Use Ahead

Load Sample Model:
Predator-Prey Agent Based

(Via “Sample Models” under “Help” Menu)

Example “Classes”

“Agent” classes
(Define the actors)

“Main” classes
(Define the “Stage”)

“Experiment” classes
(Define the scenarios)

Key Customized “Classes”
• The structure of the model is composed of

certain key user-customized “classes”

• “Main” class
– Normally just one instance

– This will generally contain collections of the other
classes

• “Agent” classes
– Your agent classes

– There are typically many instances (objects) of these
classes at runtime

• “Experiment” classes
 These describe assumptions to use when running the

model

Subclasses of “ActiveObject”

Double Click on “Main” Class Name to
View this Class (Should Appear on Top Tab)

Double Click Here!

“Main” Class

• Defines the environment where agents interact

• Defines interface & cross-model mechanisms

• The Main object normally contains one or more
populations of “replicated” agents

– Each population consists of agents of a certain class (or a
subclass therefore), e.g.

• “Hares”

• “Lynxes”

– The agent classes are defined separately from the Main
class

Agent Populations in the Main Class

• Through the “Replication” property, the number of
these agents can be set

• The “Environment” property can be used to
associated the agents with some surrounding
context (e.g. Network, embedding in some
continuous space, with a neighborhood)

• Statistics can be computed on these agents

• Within the Main class, you can create
representations of subpopulations by dragging from
an Agent class into the Main class area

Elements of a “Main” Class

These “functions”
Calculate things or can
change model behavior

These “parameters” specify
static model-wide characteristics

Visual output elements used during simulation

These represent the agent
populations

Visual input elements used during simulation (param. setting)

Agent Class Defines the Characteristics &
Behaviour of Agent Population Members

Double Click on “Lynx”!

A Critical Distinction:
Design (Specification) vs. Execution (Run) times

• The computational elements of Anylogic support
both design & execution time presence & behaviour

– Design time: Specifying the model

– Execution time (“Runtime”): Simulating the model

• It is important to be clear on what behavior &
information is associated with which times

• Generally speaking, design-time elements (e.g. in
the palettes) are created to support certain runtime
behaviors

A Familiar Analogy

• The distinction between model design time & model
execution time is like the distinction between

– Time of Recipe Design: Here, we’re

• Deciding what exact set of steps we’ll be following

• Picking our ingredients

• Deciding our preparation techniques

• Choosing/making our cooking utensils (e.g. a cookie cutter)

– Time of Cooking: When we actually are following the
recipe

• A given element of the recipe may be enacted many times
– One step may be repeated many times

– One cookie cutter may make many particular cookies

Cooking Analogy to an Agent Class:
A Cookie Cutter

• We only need one cookie cutter to bake many
cookies

• By carefully designing the cookie cutter, we can
shape the character of many particular cookies

• By describing an Agent class at model design time,
we are defining the cookie cutter we want to use

Common Agent-Class Elements

This defines the visual elements to be used for this
object when it is displayed at runtime.

These introduce “methods” (“functions”) that include some Java code

These “parameters” specify
static agent characteristics

These describe the agent state & behaviour –
the mechanisms that will govern agent dynamics

This defines the visual
elements to be used for this
object when it is displayed
at runtime.

These introduce
“methods” (“functions”)

That include some Java
code for custom

behaviours

These “parameters” give static
characteristics of the agent

These describe the “behaviours” – the mechanisms that will
govern agent dynamics

Experiments

Experiment Classes
• Experiment classes allow you to define & run scenarios

in which global parameters (i.e. parameters defined in
Main) may hold either default or alternative values

• Experiment classes are also used to set
– The time horizon for a simulation

– Memory limits (important for large models)

– Details of simulation run

– Details on random number generation

– Virtual machine arguments

• “Properties” allow one to set the values for each
parameter

• Right click on these & choose “Run” to run such a
scenario

Setting Memory
& Virtual Machine Arguments

The Notion of a “Build”

• We prepare a fully specified model to run a
simulation using a “build”
– If all goes well, this translates project to executable Java

– This may alert you to errors in the project

• A “Compiler” is a tool to convert from a
program’s specification (e.g. state charts,
Action diagrams, etc.) to a representation that
can be executed
– Normally a compiler is applied to each of several

components of a program (e.g. classes)

– AnyLogic’s “build” process applies a compiler to the
components of the AnyLogic model

Cooking Analogy to “Build”ing:
Obtaining & Preparing the Ingredients

• Before we can actually realize the recipe, we
need to go collect & prepare all ingredients

• We’re not yet cooking, but what we are doing
makes the cooking possible

• The “cooking” here is running the modle

A Bit on “Java”…
• “Java” is a popular cross-platform “object oriented”

programming language introduced by Sun
Microsystems

• Anylogic is written in Java and turns models into Java

• AnyLogic offers lots of ways to insert snippets (“hooks”)
of Java code

• You will need these if you want to e.g.
– Push AnyLogic outside the envelop of its typical support

• e.g. Enabling a network with diverse Agent types

– Exchange messages between Agents

– Put into place particular initialization mechanisms

– Collect custom statistics over the population

Stages of the Anylogic Build

Person.class

Java Code
JVM
Byte
Code

Modification Not Possible Modification
Possible

“Build” Buttons
(One just for this project, one for all projects)

Build all projects

Build just this
project

Alternative: Building via Context Menu

Builds Gone Bad: The “Problems View”

Builds Gone Good: Model Execution

• The simulation is running

• Time is advancing in steps or as necessary to
handle events

• Each agent class will typically have many
particular agents in existence
– Each agent will have a particular state

– This population may fluctuate

• Variables will be changing value

• Presentation elements will be knit together into
a dynamic presentation

Press this button to run an experiment (a simulation)
You can pull down the menu to choose
which experiment to simulate

Initial Screen: Experiment Set up
(Use to set speed, parameters via UI)

Press this button to switch to the model presentation
display

Presentation of the Model “Main”
Object in Operation

Network Embedding of Agents

Dynamic color updates via agent logic

Pausing the Model

Drill Down from the Model to
Particular Agents

Runtime View of Particular Agent
(Drill Down from Previous View)

Use this selection to switch between viewing the
State of different agents

Customizing the Model Running User
Interface

Switching Back to View the Main
Object

Controlling Simulation Speed
(Speeding up)

Controlling Simulation Speed
(Slowing Down)

Toggling between Maximum and a
Throttled Speed

Terminating Model Execution

Another Way to Terminate a
Simulation

Use this Console “stop’” button to terminate the simulation

Examples of Where to Insert Code
Object Properties

• “Advanced”

Examples of Where to Insert Code
Object Properties

 • “General”

Example of Where to Insert Code
Presentations Properties

• “Dynamic”
properties of
presentation
elements
(especially
of Agents)

Tips to Bear in Mind While Writing Code
• Click on the “light bulb” next to fields to get

contextual advice (e.g. on the variables that are
available from context

• While typing code, can hold down the Control key
and press the “Space” key to request
autocompletion
– This can help know what parameters are required for a

method, etc.

• Java is case sensitive!

• Can press “Control-J” to go to the point in Java
code associated with the current code snippet

• Can press “build” button after writing snippet to
increase confidence that code is understood

Example of Contextual Information

Autocompletion Info (via Control-Space)

